
Appears in Proceedings, Third IEEE International Symposium on Requirements Engineering
(RE'97), January 5-8th, 1997, Annapolis, Maryland, USA.

Formal Methods for V&V of partial speci�cations: An experience

report

Steve Easterbrook and John Callahan
fsteve,callahang@cs.wvu.edu

NASA/West Virginia University Software IV&V Facility

100 University Drive
Fairmont, WV 26554

Abstract
This paper describes our work exploring the suit-

ability of formal speci�cation methods for indepen-
dent veri�cation and validation (IV&V) of software
speci�cations for large, safety critical systems. An
IV&V contractor often has to perform rapid analy-
sis on incomplete speci�cations, with no control over
how those speci�cations are represented. Lightweight
formal methods show signi�cant promise in this con-
text, as they o�er a way of uncovering major errors,
without the burden of full proofs of correctness. We de-
scribe an experiment in the application of the method
SCR to testing for consistency properties of a partial
model of the requirements for Fault Detection Isola-
tion and Recovery on the space station. We conclude
that the insights gained from formalizing a speci�ca-
tion is valuable, and it is the process of formalization,
rather than the end product that is important. It was
only necessary to build enough of the formal model to
test the properties in which we were interested. Main-
tenance of �delity between multiple representations of
the same requirements (as they evolve) is still a prob-
lem, and deserves further study.

1 Introduction
Requirements engineering methods typically pro-

vide a set of notations for expressing software speci�-
cations, together with tools for checking properties of
speci�cations, such as completeness and consistency.
In general, such methods demand a full commitment.
It is assumed that the method will be used to con-
struct a complete speci�cation, which will then act as
a baseline for subsequent development phases. How-
ever, to validate and verify large speci�cations for
safety-critical real-time systems, it is sensible to ap-
ply a number of di�erent methods, to overcome weak-
nesses and biases of each individual method. For ex-
ample, a formal method might be used to model a
critical portion of an informal speci�cation, to check
safety and liveness properties of that portion. In order
to manage the application of multiple methods, it is
necessary to develop and maintain alternative repre-
sentations of partial speci�cations, and to express the
relationships between them.

This paper describes some preliminary work on the
use of formal speci�cation as a tool for Independent

Veri�cation and Validation (IV&V). Our intention is
to use formal methods not as a part of the develop-
ment process itself, but as a `shadow' activity, per-
formed by an independent team of experts. Our long-
term expectation is that this approach will turn out
to be a less painful way of introducing formal methods
into well-established, large-scale software development
processes.

There are a number of questions that need to be
addressed before formal methods can be used in this
way. Most published case studies of formal methods
have focussed on the use of a formal speci�cation as
a baseline from which design and code can be veri�ed
[3]. In contrast, we have been applying formal meth-
ods for intermittent \spot checks" to test for errors as
the requirements evolve. The term \lightweight formal
methods" has been used to describe this approach [15].
In this context, the the formal speci�cation is dispens-
able { what is important are the insights gained from
the process of formalizing partial views of the require-
ments and from validating properties of the resulting
models. However, it is still necessary to demonstrate
�delity between the original (informal) speci�cation,
and the formal model. Furthermore, iterative applica-
tion of this approach can be greatly facilitated if the
relationships between the partial views are captured.

The context for this work is the development of soft-
ware for the International Space Station (ISS) project.
Boeing Space and Defense Group Houston (Prime)
is responsible for supervising the overall development
and integration of International Space Station soft-
ware. There are three ProductGroups (PGs), McDon-
nell Douglas Aerospace, Rockwell Aerospace - Rocket-
dyne and Boeing Space and Defense Group Huntsville,
who are developing several key Computer Software
Con�guration Items (CSCIs). There are also several
International Partners (IPs) including Russia, Japan,
Canada, and the European Space Agency, who are
developing software that will need to be incorporated
into ISS. With over 45 ight computers and an esti-
mated 1.1 million source lines of ight code, the po-
tential problems are considerable. Software IV&V is
currently being performed by Intermetrics, under an
interim contract. The Intermetrics team is based at
Fairmont, W.Va., with personnel stationed in Houston
and Huntsville in order to interact with the develop-



ment teams.
In section 2, we outline the IV&V process, and dis-

cuss the aspects of this process that hinder e�ective
IV&V. With this as background, the remainder of the
paper focuses on the use of methods and tools within
this process. We present two experiments in the use
of formal speci�cation. For these we used a combi-
nation of AND/OR tables [8], and the Software Cost
Reduction (SCR) approach [9]. The �rst experiment
involved the translation of a portion of the Fault De-
tection, Isolation and Recovery (FDIR) speci�cation
into a formal notation. This experiment con�rmed
that the natural language used in the Software Re-
quirements Speci�cation (SRS) documents is inher-
ently ambiguous, and that the task of generating for-
mal speci�cations from this documentation is fraught
with di�culty. In the second experiment, we applied
an automated consistency checking tool, to test some
formal properties of the speci�cation. Although this
experiment demonstrated that important disjointness
properties did not hold, the results did not add any
more value to the analysis. The �rst experiment had
already demonstrated that the way in which these re-
quirements were expressed was a problem. The errors
found in the second experiment were attributable to
the same problem.

Application of formal methods in this context was
not always easy. The informal speci�cation from
which we derived our models did not permit an easy
translation into a state-based model. We encountered
severe problems in demonstrating �delity, and provid-
ing traceability between the two. Section 5 discusses
these problems, and sketches out further work aimed
at eliciting relationships between partial speci�cations
by extracting information from �ne-grained process
capture.

We conclude that in an IV&V context, the ana-
lytical bene�ts o�ered by formal methods have to be
weighed against the e�ort needed to maintain �delity
between a formal model and the informal speci�ca-
tion used by the development team. An IV&V team
needs to be able to perform partial analyses on partial
speci�cations, without being tied to any one formal-
ism. The analysis carried out must be su�cient to
reveal important problems, as opposed to surface de-
fects. Further analysis is a waste of e�ort until these
problems have been �xed. This conclusion implies a
change of perspective for the use of formal methods:
while the speci�cation is still evolving it is important
to identify quickly any major defects; it is not neces-
sary to perform a complete analysis. Tools that are
geared towards �nding and characterizing such prob-
lems (E.g. SCR* [10], Nitpick [11], etc.) are more
useful than tools geared towards proving correctness
(E.g. theorem provers).

2 The IV&V Process
For Independent Veri�cation and

Validation (IV&V), the software customer hires a sep-
arate contractor to analyze the products and process
of the software development contractor. This analysis
is performed in parallel with the development process,
throughout the software lifecycle, and in no way re-

places in-house V&V. IV&V is applied in high-cost
and safety-critical projects to overcome analysis bias
and reduce development risk. The customer relies on
the IV&V contractor as an informed, unbiased advo-
cate to assess the status of a project's schedule, cost,
and the viability of its product during development.
In full IV&V, the IV&V contractor has managerial,
�nancial and technical independence, and reports to
the customer, not the developer. Most importantly,
the IV&V contractor should be engaged as early as
possible in the project: studies have shown that IV&V
has the biggest impact in the early phases, especially
in the requirements phase [13].

An example IV&V activity is the analysis of spec-
i�cations on the Space Station project. An SRS is
written by the relevant development contractor for
each Software Con�guration Item (CSCI). These are
written in natural language, and follow the format
of DOD-STD-2167A. The IV&V contractor periodi-
cally receives copies of the SRS documents, in various
stages of completion. These are analyzed for technical
integrity by the IV&V contractor, in order to iden-
tify any requirements problems and risks. The kind of
analysis performed will vary according to the level and
the type of speci�cation, and will cover issues such as
clarity, testability, traceability, consistency and com-
pleteness. If problems are identi�ed, the IV&V con-
tractor may recommend that either the requirements
be rewritten, or the problem be tracked through sub-
sequent phases.

Performing IV&V on large projects is far from
straightforward. Problems faced by the IV&V con-
tractor include:

resource allocation { A complete, detailed analysis
of the entire system is infeasible. E�ort has to
be allocated so as to maximize e�ectiveness. For
example, a criticality and risk analysis might be
performed to determine which components need
the most scrutiny. Timing is also a factor; e�ort
needs to be allocated at the right points in the
development of a product (e.g. a document), so
that the product is mature enough to be analyzed,
but not so mature that it cannot be changed.

short timescales { To be most e�ective, IV&V re-
ports are needed as quickly as possible. There is
always a delay between the delivery of an interim
product to the IV&V team, and the completion
of analysis of that product. During this time, the
development process continues. Hence, if IV&V
analysis takes too long, the results might be avail-
able too late to be useful. In general, the earlier
an error is reported, the cheaper it is to correct.

lack of access { Contact between the development
team and the IV&V team is di�cult to manage.
The IV&V team needs to maintain independence,
whilst ensuring they obtain enough information
from the developers to do their job. From the
developers' point of view, interaction with the
IV&V team represents a cost overhead, which can
interfere with project deadlines. Inevitably, the

2



IV&V contractor has less access to the develop-
ment team than is ideal.

evolving products { Documentation from the de-
velopment team is usually made available to the
IV&V contractor in draft form, to facilitate early
analysis. The drawback is that documentsmay be
revised while the IV&V team is analyzing them,
making the results of the analysis irrelevant be-
fore it is �nished.

reporting the right problems { The IV&V con-
tractor has, by necessity, considerable discretion
over the kinds of analysis to perform on di�erent
products. It also has discretion over which prob-
lems to report. It is vital to the e�ective use of
IV&V that the IV&V contractor prioritizes the
problems it identi�es. If too many trivial prob-
lems are reported, this may swamp the communi-
cation channels with the developer and the cus-
tomer.

lack of voice { The IV&V contractor may have
di�culty in getting its message across, espe-
cially when the development contractor disputes
IV&V's assessment. Often, problems found by
IV&V have cost and schedule implications, and
in such circumstances the customer may be more
willing to listen to assurances from the developer.
The e�ectiveness of IV&V then depends on hav-
ing a high-placed advocate within the customer
organization.

Despite these problems, IV&V has been shown to
be a cost-e�ective means of improving the quality of
the software product, and providing extra assurance
for high-cost, safety-critical projects [12]. In addition
to providing analysis of project artifacts (e.g. require-
ments, code, test plans), the presence of IV&V in the
lifecycle also has a positive e�ect on the quality of
the software. Our work suggests that the interaction
between the IV&V and development teams drives im-
provements in both products and processes. This ef-
fect, however, is di�cult to capture and quantify.

3 Methods and Tools in IV&V
An important aspect of IV&V is the choice of the

right methods and tools. Ideally, an IV&V contractor
will have access to all the tools used by the develop-
ment team, including the ability to share all project
databases. However, the IV&V team also needs to
supplement these with additional methods and tools,
to address any gaps or weaknesses in the coverage of
the developer's tools. These additional tools need to
complement the developer's tools, so that interoper-
ability does not become a problem. The use of these
additional tools is an important factor in ensuring that
IV&V is truly independent.

It is often the case that the use of a particular
method or tool by the IV&V team leads to the adop-
tion of that method or tool by the developers. In part
this is due to the `watchdog e�ect': if the developers
know that their product will be analyzed in a partic-
ular way, it is in their interest to perform the analysis

themselves before releasing it. If this seems to be a
rather negative reason to adopt a technique, there is
also a positive aspect. Because the IV&V team is out
of the critical path for the software development ef-
fort, they have more scope for experimentation with
new techniques than the developers [1]. Hence, in
some ways the IV&V team can play a role as a prov-
ing ground for new techniques, and can come to be
an agent of process improvement. For these reasons,
we believe that IV&V o�ers a practical route through
which formal methodsmay be introduced into projects
that would otherwise not be able to adopt them.

There are still problems to be overcome whenever
the IV&V team adopts a tool that is not used by the
developers. Compatibility with the developers' tools
is important. For example, if the IV&V team uses
a formal speci�cation tool, the informal speci�cation
delivered by the developers will need to be translated
into the formal speci�cation language not just once,
but each time the developers produce a new draft.
Any problems identi�ed by using the tool must be
traced back to the informal speci�cation, before they
can be reported. There must be a reasonable assur-
ance that the formal speci�cation remains faithful to
the original, otherwise any analysis performed on it
is worthless. Hence, keeping track of the relationship
between the formal and informal speci�cations is vital.

4 Experiments with formal methods
Having described the role that an IV&V contractor

plays in the software process, and outlined the issues
involved in the selection of tools and techniques for
IV&V, we now present our work on the use of formal
methods in the IV&V of requirements speci�cations.
We performed two experiments. The �rst was a for-
malisation of individual requirements statements into
a tabular form, to improve clarity. The second was the
development of a formal model of these requirements,
which was then tested for consistency.

Currently, the development contractors on the
Space Station project use natural language speci�ca-
tions extensively. We are working with the IV&V team
to explore how formal methods can enhance the kinds
of analysis they perform on the developer's informal
speci�cations. Here, we will report our work with the
Fault Detection, Isolation and Recovery requirements
for the main command and control bus. An example
requirement is given in �gure 1.

Our initial interest in formal methods was twofold.
First, it was clear that the informal speci�cations were
hard to understand, and would bene�t from a clearer
representation. We needed a notation that was both
precise and easy to read. Leveson's AND/OR tables
[8] provided us with a solution. During the develop-
ment of the RSML speci�cations for TCAS II, Leveson
adopted these AND/OR tables in preference to predi-
cate calculus, as they were readable by a wide range of
people. This tabular representation was well suited to
the Space Station FDIR requirements (see table 1), as
it mapped directly onto the individual requirements
statements.

Second, we needed a way to verify that the speci�ed
functionality was internally consistent. For the FDIR

3



(2.16.3.f) While acting as the bus controller, the C&C MDM CSCI shall set the e,c,w,

indicator identi�ed in Table 3.2.16-II for the corresponding RT to \failed" and set the

failure status to \failed" for all RT's on the bus upon detection of transaction errors of

selected messages to RTs whose 1553 FDIR is not inhibited in two consecutive processing

frames within 100 millisec of detection of the second transaction error if; a backup BC is

available, the BC has been switched in the last 20 sec, the SPD card reset capability is

inhibited, or the SPD card has been reset in the last 10 major (10-second) frames, and

either:

1. the transaction errors are from multiple RT's, the current channel has been reset

within the last major frame, or

2. the transaction errors are from multiple RT's, the bus channel's reset capability is

inhibited, and the current channel has not been reset within the last major frame.

Figure 1: An example of a level 3 requirement for FDIR of the Command and Control bus for Space Station. This
requirement speci�es the circumstances under which all remote terminals (RTs) on the bus should be switched
to their backups.

requirements, this meant checking that the conditions
speci�ed for each recovery action were mutually ex-
clusive, and that the requirements covered all possi-
ble conditions. Hand checking these properties would
have been hard, so we sought a tool to help. We ex-
amined several tools, before selecting SCR* [10]. SCR
o�ered two important advantages. First, the nota-
tion was primarily tabular, which appeared to be an
important aid to readability. Second, the tool had au-
tomated checking for properties such as coverage and
disjointess of a state based model [9]. In addition,
this tool did not require us to build a complete formal
model of the Bus FDIR functionality in order to check
these properties.

4.1 Experiment 1: Translation

Our �rst experiment concerned the translation of
requirements like that shown in Figure 1 into a formal
notation. Leveson's AND/OR tables allowed us to
represent arbitrary combinations of conjunctions and
disjunctions without ambiguity, and in a form that
was clearly readable. Table 1 shows the tabular form
of the requirement in Figure 1.

For the IV&V team, this was a signi�cant improve-
ment in readability. More importantly, the process of
producing the tables ensured that the analysts fully
understood the requirement. This bene�t is very im-
portant for IV&V. In many cases, just reading a spec-
i�cation is insu�cient to really appreciate the de-
tail. Short of repeating the development process from
scratch, it can be hard for the IV&V analyst to under-
stand a speci�cation in the same way that its authors
understand it. Translating it into a table, however,
proved to be a valuable clari�cation process.

There was, unfortunately, a problem. Translation
of a single requirement, like the one above, was not a
straightforward task. Translation of this requirement
took several attempts until we were happy with the
table, and even then we were not convinced that it
was right.

We conducted an experiment to investigate the
problem. We gave the English language version to

four di�erent people, all of whom had some experience
of representing requirements using tables, and asked
them to produce the tabular form. Two of these peo-
ple were domain experts, and two were not. We were
interested in exploring the scope for misinterpretation
of the requirements from the point of view of both do-
main experts who write such requirements, and other
stakeholders, such as the programmerwho would have
to implement them.

We received four di�erent answers. These di�ered
in both the number of conditions identi�ed (i.e. num-
ber of rows in the table) and the number of combina-
tions under which the function would be activated (i.e.
columns in the table). The version shown in Table 1
is a synthesis of the four answers, representing what
we currently believe is the intended interpretation.

The di�erences in the responses show that the origi-
nal requirement is riddled with ambiguities. For exam-
ple, the mixture of `ands' and `ors' in the requirement
is a problem because, unlike programming languages,
English does not have any standard precedence rules.
It is not clear how to scope the various subclauses,
either. For example, the timing condition `within 100
millisec...' could refer to the inhibition of the FDIR,
or to one or both of the required setting operations.
With a little domain knowledge, it is possible to elim-
inate some interpretations, but this is by no means a
trivial task, and there is no guarantee that everyone
who needs to read this requirement will get it right.

The experiment demonstrated three important re-
sults. Firstly, the tabular forms were very helpful in
resolving misunderstandings. For example, it would
be di�cult to discover that our four subjects had dif-
ferent interpretations of the original requirement with-
out asking them to re-write it. By re-writing it in
tabular form, we could identify exactly where the dis-
agreements lay, and then take each discrepancy in turn
and discuss what we thought the most likely inter-
pretation was. From this, we were able to synthesize
a `best' interpretation. Obtaining individual transla-
tions and comparing them was more e�ective in identi-
fying di�erences in our understandings than our initial

4



OR
C&C MDM acting as the bus controller T T T T
Detection of transaction errors T T T T
in two consecutive processing frames
errors are on selected messages T T T T
the RT's 1553 FDIR is not inhibited T T T T
A backup BC is available T T T T

A The BC has been switched in the last 20 seconds T T T T
N The SPD card reset capability is inhibited T T . .
D The SPD card has been reset in the last 10 major . . T T

(10 second) frames
The transaction errors are from multiple RTs T T T T
The current channel has been reset within the last T F T F
major frame
The bus channel's reset capability is inhibited . T . T

Table 1: A Leveson-style table for requirement 2.16.3.f. This table summarizes the conditional part of the
requirement in Figure 1, showing four combinations of conditions (the four columns) under which the speci�ed
action should be carried out).

attempts to work together to produce a single trans-
lation. This con�rms a hypothesis described in [5],
that negotiating requirements conicts is more e�ec-
tive if we start with a precise description of each per-
son's individual viewpoint. Note that our �nal version
was di�erent from all four of the individual versions,
implying that if the �nal version is correct, all four
individual attempts were wrong!

This leads to the second result, which is that trans-
lation of informal requirements into a formal notation
is error prone. All four of our subjects had some ex-
perience of using such tables, so the problem lies not
in the correct use of the notation, but in the interpre-
tation of the informal statement of requirements. The
requirement we used in the experiment is perhaps an
extreme example, given its rather convoluted English.
However, there is enough scope for misinterpretation
in the process of formalizing the requirements to cause
us to worry about the �delity of our formal models.

The third result is that the whole process was re-
markably good at identifying ambiguities in the orig-
inal speci�cation. By producing di�erent interpreta-
tions and comparing them, we were able to identify a
systematic pattern of ambiguities in the way the En-
glish language requirements were written. Hence, even
if the IV&V team fail to persuade the development
team to adopt a tabular notation, they can at least
help them to correct the ambiguities in the English.

In fact, the development contractors have used the
tabular notation occasionally, in the most recent ver-
sions of the speci�cations. Initially, they resisted the
IV&V team's requests to adopt a tabular notation,
largely because of schedule constraints. They have
now begun to use the notation for revisions of the spec-
i�cations, especially in areas where reviewers had had
problems with readability. We regard this as a small
but important process improvement, inspired by the
IV&V team.

4.2 Experiment 2: Analysis of Partial
Speci�cations

Our second goal was to check some of the properties
of the FDIR speci�cation that could not be checked by
hand. One of the important validity checks for these
requirements is that an action is speci�ed for each pos-
sible combination of failure conditions. Another check
is that no combination of conditions has conicting
actions speci�ed for it. We refer to these as coverage
and disjointness checks, respectively [14].

In practice, there were two approaches that IV&V
could take to verify such properties. They could ob-
tain the development team's failure model, validate
this model, and then verify the requirements against
the model. Or they could generate their own behav-
ioral model of the requirements as described, verify
that it is internally consistent, and then validate this
against their understanding of the system. The lat-
ter approach was chosen, partly because the IV&V
team has had di�culty obtaining the original models
on which the speci�cation is based, and partly because
the latter approach was more likely to overcome anal-
ysis bias.

We chose SCR as an appropriate model to perform
these analyses for a number of reasons. First, the tab-
ular notation used in SCR maps onto the AND/OR
tables we had already generated in a fairly systematic
way. Each AND/OR table represents a single row in
a mode transition table in SCR. Second, there was a
tool (SCR*) available for checking SCR speci�cations
which included both coverage and disjointness tests,
and which had a simulator built in for animating the
complete state-based model. A model checker was be-
ing added. Furthermore, the consistency checker in
the SCR* tool provides counter-examples whenever an
inconsistency is found. Our early experiments with a
theorem prover (PVS [14]) were abandoned because
when a proof failed, it took too long to discover the
problem. The provision of counter-examples is impor-

5



tant in tracing problems back to the informal speci�-
cation, and in convincing the development team that
there really is a problem.

The �rst step was to produce an SCR model of the
speci�ed FDIR behavior. At this stage we had six
AND/OR tables, similar to the one shown in Table
1, representing the six paragraphs, a to f, of section
2.16.3 of the requirements. Each paragraph isolates
one failure mode, and speci�es an appropriate action.
We merged these into a single table, modeling each
failure mode as a separate SCR mode (Table 2).

Merging the AND/OR tables to produce Table 2
was not straightforward. Although there were a num-
ber of conditions common to several of the tables, the
wording varied, and it was not always obvious whether
similar sounding phrases actually referred to the same
condition, due to inconsistencies in the use of termi-
nology. For example the condition \the bus has been
switched in the major (10-second) frame" appeared in
one paragraph, and \the bus has been switched in the
last major frame" appeared in another. We initially
assumed these to be identical. However, this led to an
inconsistency in the table. In fact the former refers to
the current frame, while the latter refers to the pre-
vious frame. There were numerous places where we
had to make assumptions to proceed, and we carefully
recorded these as annotations to the original text, to
be checked with the developers.

The modes we have identi�ed are not present ex-
plicitly in the informal speci�cation. Our modes cor-
respond intuitively to failure modes, but might not
be a particularly good choice for simulation or model
checking purposes, because they really express output
events rather than states. However, they suit our pur-
pose, as the table in this form can be checked directly
for coverage and disjointness without completing the
model. In fact, the complete model would be com-
plicated: a clock would be needed to implement the
bus processing frames, together with several timers to
keep track of historical state. Even then, SCR cannot
(currently) represent timing conditions on the required
functions.

Having created the table, we then checked it for
coverage and disjointness. Not surprisingly, the ta-
ble is not disjoint: in fact there is an overlap between
every possible pair of rows. Analysis of the counter-
examples provided by the SCR* tool indicates a sys-
tematic under-speci�cation of the conditions. The
original model of the FDIR system was a procedural
model with an explicit order on the checks that need
to be performed. The speci�cation does not have this
explicit ordering, and the described conditions do not
adequately express this ordering. However, this result
was not a surprise: the IV&V team had already sub-
mitted a report suggesting that the ordering be made
explicit in the speci�cation.

While we were producing this analysis, a new draft
of the speci�cation was released. The section spec-
ifying Bus FDIR requirements had been re-written,
partly due to issues raised by the IV&V team, both
before and after our �rst experiment. The new ver-
sion is much clearer (but does not use our tables). It
is also much simpler: several failure modes and at least

half the conditions expressed in Table 2 have been re-
moved, and the disjointness problem described above
has been corrected.

Hence our formal analysis was redundant before it
was complete. In practice, it would have been possible
to perform the analysis much earlier: we delayed the
work until a full release of the SCR* tool was avail-
able. However, we can now apply the same technique
to other parts of the speci�cations, and expect that
in some cases it will identify new problems, while in
others it will supply concrete evidence of known prob-
lems. Once the requirements are stable, we plan to
build a complete model of the FDIR subsystem, and
use a model checker to study its behavior under re-
peated and intermittent fault conditions.

5 Discussion
We have described our on-going work with formal

methods as a tool for an Independent V&V team to
perform analysis of software requirements. Our ini-
tial results are encouraging: the translation process
was extremely valuable in identifying ambiguities and
improving our understanding of the speci�cation. In
this process, a number of errors were found. Analysis
of a partial formal speci�cation demonstrated an im-
portant error in the speci�cation, and appears to be a
powerful means of gaining maximal results from min-
imal e�ort. We constructed just enough of a model to
test the properties we were interested in, without any
further commitment to the method.

However, our experiments have revealed two related
problems: it is hard to guarantee �delity between in-
formal and formal speci�cations, and it is hard to
manage consistency between partial speci�cations ex-
pressed in di�erent notations.

Although the major �nding of our formal analysis
is valid, we are not con�dent that the partial model
is faithful to the version of the developer's speci�ca-
tion on which it is based. This �delity issue is more
of a problem in IV&V than in development. A for-
mal model developed by the IV&V team cannot re-
place the informal speci�cation. The IV&V teammust
therefore either persuade the developers to adopt for-
mal notations themselves, or take care to maintain �-
delity between the developers' informal speci�cations
and their own formal models. With the current state
of practice, wholesale adoption of formal methods by
the developers on an existing project is unlikely [4].

The �delity problem is important to IV&V because
the formal models developed by IV&V are produced
for the purposes of checking the developer's speci�-
cations. The models are only useful for this purpose
if they are accurate representations of the developer's
speci�cations. Also, when analysis of the formal mod-
els reveals problems in the speci�cations, these prob-
lems must be traced back to the informal speci�cation
before they can be reported.

Although the �delity problem seriously a�ects the
utility of any formal analysis performed by the IV&V
team, we should point out that it does not a�ect all
the bene�ts of formal speci�cation. The process of
translating pieces of the informal speci�cation into a
formal notation has bene�t not just for the analysis

6



Current Conditions Next

Mode errors bus bus bus backup BC card card errors channel channel Mode

in two swch'd switch swch'd BC swch'd reset reset from reset reset

cons. last inhibit this avail. in last inhibit last 10 mult. last inhibit

frames frame frame 20 sec frames RTs frame

Normal @T - - F - - - - - - - switch buses

@T - T F - - - - - - F reset the

@T T - F - - - - - - F channel

@T - - - - - F F T T - reset the

@T - - - - - F F T F T card

@T T - - - - - - F T - switch RT

@T F T - - - - - F T - to backup

@T T - - - - - - F F T

@T F T - - - - - F F T

@T - - - T F T - T T - switch BC

@T - - - T F T - T F T to backup

@T - - - T F - T T T -

@T - - - T F - T T F T

@T - - - T T T - T T - switch

@T - - - T T T - T F T all RTs

@T - - - T T - T T T -

@T - - - T T - T T F T

Table 2: An SCR Mode transition table. Each of the central columns represents a condition, showing whether it
should be true or false; `-' means \don't care"; `@T' indicates a trigger condition for the mode transition. The
four columns of table 1 correspond to the last four rows of this table. The semantics of SCR require this table
to represent a function, so that the disjunction of all the rows covers all possible conditions (coverage), and the
conjunction of any two rows is false (disjointness).

that it leads to, but also for the removal of ambiguities
and for improved understanding. For this bene�t, it
is the process of formalization, rather than the end
product that is important.

The �delity problem is really a special case of a
more general problem: management of consistency be-
tween partial speci�cations expressed in di�erent no-
tations. For instance, the AND/OR tables have a
clear relationship with the SCR mode tables, but if
we make a correction to one of the AND/OR tables,
it is fairly tedious to identify the corresponding cor-
rection in the SCR tables. Similarly, each time the
developers issue a new informal speci�cation, we need
to update our tabular representations. Although it
may seem that the use of both AND/OR tables and
SCR models together would compound this problem,
the opposite is true. The AND/OR tables mapped
clearly onto the textual requirements, while the rela-
tionship between the AND/OR tables and the SCR
model was relatively straight forward. Therefore, the
use of AND/OR tables as an intermediate representa-
tion reduced the traceability gap, and made it easier
to keep the formal model up to date. There remains,
however, a signi�cant bookkeeping problem.

There is a growing body of work on handling incon-
sistency in speci�cations. Our previous work demon-
strated how to delay the resolution of inconsistency,
and provided a generic framework for expressing con-
sistency relationships [6]. Other work has taken con-
sistency checking further, making use of semantic
models underlying a method to determine what con-
sistency rules are needed and how to operationalize
them. For example, Heitmeyer's work with consis-
tency checking in SCR [9] uses the semantics of SCR

to de�ne a series of consistency rules ranging from sim-
ple syntactic checks (e.g. that all names are unique)
to sophisticated properties of tables (e.g. coverage
and disjointness). Similarly, Leveson's work on con-
sistency checking in RSML [8] uses the semantics of
the statechart formalism to determine a set of consis-
tency rules that can be tested, tractably, using a high
level abstract model. In both these approaches, the
completeness of the formal speci�cations is important,
and consistency checking is seen as part of the process
of obtaining a complete, consistent speci�cation.

Unfortunately, these approaches do not help with
consistency checking between partial speci�cations ex-
pressed in di�erent notations. Because the IV&V pro-
cess is concurrent with and complementary to the de-
velopment process, there is an unusually large amount
of exibility in how a formal method can be used.
There is no need to make a commitment to any one
formal notation, just as there is no need to develop
complete speci�cations. In fact, the aim of the IV&V
agent is not to perform complete analyses, but to do
just enough analysis to check speci�c aspects of the
software. Development of complete formal models is
therefore unnecessary and may be counter-productive.
For example, in our second experiment, the limited
analysis we performed on a partial model was su�-
cient to reveal a major problem; the existence of this
problem meant that any further e�ort to complete the
model would have been wasted.

While the use of partial speci�cations o�ers greater
exibility in the use of methods and tools, it also
means that we do not have a well-de�ned method from
which to generate a set of consistency relationships.
There are implicit consistency relationships between

7



the assorted partial speci�cations drawn from di�er-
ent methods, but there is no overall `method' to to
tell us what these relationships are. Actually, there
is a method: the problem is that it is implicit, and
to some extent is generated on the y. For example,
there is a method for generating SCR mode tables
from the AND/OR tables, but the method was not
de�ned before we did it. With some e�ort, we could
formalize this method, and de�ne semantic relation-
ships between the two types of table. However, this
e�ort will only be worthwhile if we intend to re-use
the method extensively. In the meantime, we would
like to have tools to help us keep track of consistency
relationships in our opportunistic use of partial spec-
i�cations.

In our previous work de�ning consistency relation-
ships between viewpoints, we assumed that the ma-
jority of such rules are de�ned by the method [6]. The
viewpoints framework explicitly supports the process
of method de�nition, in which, among other things,
the inter-viewpoint relationships are de�ned. Hence
the general problem of de�ning arbitrary relationships
between any two notations is avoided. However, we
also recognized that some consistency relationships
could not be de�ned in this way, and gave the ex-
ample of a user-de�ned synonym relationship between
two di�erent labels. We also outlined an approach to
discovering such relationships through low level pro-
cess monitoring. We now regard this type of consis-
tency relationship as vital to any approach involving
partial speci�cations.

Without a method to de�ne a priori consistency re-
lationships, we are forced to discover the relationships
as the work proceeds. In fact this is not as hard as
it sounds. By recording low level actions on the par-
tial speci�cations, we begin to build up a �ne-grained
process model, which can provide information about
consistency relationships. For example, by observing
cut and paste operations during the creation of our
AND/OR tables and our SCR mode tables, it is pos-
sible to determine the relationship between rows in the
AND/OR tables and rows in the mode table. In the
weakest case, this will provide us with a simple trace-
ability link. In fact, we believe we can do better than
this. There is enough information in the edit actions
not just to identify traceability links, but to de�ne
the relationship expressed by the link. For example, it
should be possible to determine enough information to
de�ne a consistency rule that can automatically check
that each column of the AND/OR table is consistent
with its corresponding row in the mode table. We
plan to explore this avenue further, by capturing and
analyzing this kind of process information.

6 Conclusions
This paper has described our initial work in the use

of formal methods in an IV&V project. We have dis-
cussed how the demands placed on methods and tools
in IV&V are di�erent from their use in a development
context. We have also discussed how IV&V can act
as a process improvement agent, and hence can be a
fruitful way of introducing formal methods into large
projects.

As with all potential uses of a new method, any
extra e�ort needed to use the method must be more
than o�set by the bene�ts it brings. Use of a method
in IV&V is no di�erent. We can divide the bene�ts of
using a formal method such as SCR into two areas:

1. The process of translating portions of a speci-
�cation into a tabular notation helps to detect
ambiguities and increase readability, even if the
translation is only partial. The process can also
be used to catch misunderstandings, thus increas-
ing the con�dence that the IV&V team is inter-
preting the speci�cation correctly. The process
of having several analysts produce their own tab-
ular translations was particularly useful in this
respect. Di�erences in the tables they produced
allowed us to pinpoint exactly what the disagree-
ment was about.

2. The resulting tables can be analyzed for at-
tributes such as coverage and disjointness. This
is a substantial contribution to the IV&V team's
e�orts to check the technical integrity of the spec-
i�cations. Such attributes are particularly hard
to analyze from the informal speci�cations. Most
importantly, this analysis can be conducted with-
out the need to build complete models.

The problems we encountered in applying formal
methods were as follows:

1. The process of translating into a formal notation
is error-prone. Only by duplicating the transla-
tion e�ort were we able to discover just how much
scope there is for misinterpretation. Luckily, the
resulting tables are very readable. Therefore it
is much easier to compare di�erent tables than
it is to compare di�erent versions of the informal
speci�cation.

2. For IV&V, �delity and traceability between the
informal and formal speci�cations is di�cult to
guarantee. The value of any analysis carried out
by IV&V on the formal model is entirely depen-
dent on how faithful the formal model is to the
developer's informal speci�cation. The IV&V's
formal model can not be used in place of the in-
formal speci�cations produced by the developers.

3. Opportunistic use of partial speci�cations means
that there is not a well-de�ned method from
which to derive consistency rules. Maintenance of
consistency in our partial speci�cations became a
real problem.

The problems of consistency checking in partial
speci�cations written in di�erent notations is impor-
tant enough to warrant more attention. We plan to
study the problem in more detail by developing a set
of tools based on the ViewPoint framework [7], which
will allow us to model relationships between partial
speci�cations written by di�erent people. We are also
exploring how this problem relates to that of linking
test case scenarios to requirements [2]. Finally, we are

8



continuing the experiments described in this paper by
examining how model checking can be used to validate
the speci�cations.

Acknowledgments
Our thanks are due to Chuck Neppach and Dan

McCaugherty for many interesting discussions of the
work presented here, and to Frank Schneider, Ed-
ward Addy, John Hinkle, George Sabolish, Todd Mont-
gomery and Butch Neal for detailed comments on ear-
lier drafts of this paper. This work is supported by
NASA Cooperative Research Agreement NCCW-0040.

References
[1] V. Basili. The experience factory and its relation-

ship to other improvement paradigms. In Proceed-
ings of the 4th European Software Engineering
Conference, Garmish-Partenkirchen, Germany,
September 1993.

[2] J. Callahan and T. Montgomery. An approach
to veri�cation and validation of a reliable mul-
ticast protocol. In Proceedings of the ACM In-
ternational Symposium on Software Testing and
Analysis (ISSTA), January 1996.

[3] D. Craigen, S. L. Gerhart, and T. Ralston.
Formal methods reality check: Industrial us-
age. IEEE Transactions on Software Engineering,
21(2):90{98, 1995.

[4] D. H. Craigen, S. L. Gerhart, and T. J. Ral-
ston. An international survey of industrial ap-
plications of formal methods, vol 1: Purpose,
approach, analysis and conclusions. Technical
Report NRL/FR/5546{93-9581, Naval Research
Laboratory, 1993.

[5] S. M. Easterbrook. Handling conict between do-
main descriptions with computer supported nego-
tiation. Knowledge Acquisition: An International
Journal, 3(4):255{289, 1991.

[6] S. M. Easterbrook and B. A. Nuseibeh. Managing
inconsistencies in evolving speci�cations. In Sec-
ond IEEE International Symposium on Require-
ments Engineering, pages 48{55, March 1995.

[7] S. M. Easterbrook and B. A. Nuseibeh. Us-
ing viewpoints for inconsistency management.
BCS/IEE Software Engineering Journal, 11(1),
January 1996.

[8] M. Heimdahl and N. Leveson. Completeness and
consistency analysis of state-based requirements.
In Proceedings of the 17th International Confer-
ence on Software Engineering, pages 3{14, April
1995.

[9] C. Heitemeyer, B. Labaw, and D. Kiskis. Con-
sistency checking of scr-style requirements speci-
�cations. In Second IEEE International Sympo-
sium on Requirements Engineering, pages 56{63,
March 1995.

[10] C. Heitmeyer, A. Bull, C. Gasarch, and B. Labaw.
Scr*: A toolset for specifying and analyzing re-
quirements. In Tenth Annual Conference on
Computer Assurance (COMPASS '95), pages
109{122, June 1995.

[11] D. Jackson and C. A. Damon. Elements of style:
Analysing a software design feature with a coun-
terexample detector. In International Symposium
on Software Testing and Analysis (ISSTA), pages
239{249, January 1996.

[12] Jet Propulsion Lab. Cost-e�ectiveness of software
independent veri�cation and validation. Techni-
cal Report NASA RTOP 323-51-72, NASA JPL,
October 1985.

[13] R. O. Lewis. Independent Veri�cation and Valida-
tion: A Lifecycle Engineering Process for Quality
Software. J. Wiley & Sons, 1992.

[14] S. Owre, J. Rushby, and N. Shankar. Analysing
tabular and state-transition speci�cations in pvs.
Technical Report CSL-95-12, Computer Science
Laboratory, SRI International, 1995.

[15] H. Saiedain, J. P. Bowen, R.W. Butler, D. L. Dill,
R. L. Glass, A. Hall, M. G. Hinchey, C. M. Hol-
loway, D. Jackson, C. B. Jones, M. J. Lutz, D. L.
Parnas, J. Rushby, J. Wing, and P. Zave. An
invitation to formal methods. IEEE Computer,
29(4):16{30, 1996.

9


